Purification and characterization of the acetyl-CoA synthetase from Mycobacterium tuberculosis.
نویسندگان
چکیده
Acetyl-CoA (AcCoA) synthetase (Acs) catalyzes the conversion of acetate into AcCoA, which is involved in many catabolic and anabolic pathways. Although this enzyme has been studied for many years in many organisms, the properties of Mycobacterium tuberculosis Acs and the regulation of its activity remain unknown. Here, the putative acs gene of M. tuberculosis H37Rv (Mt-Acs) was expressed as a fusion protein with 6×His-tag on the C-terminus in Escherichia coli. The recombinant Mt-Acs protein was successfully purified and then its enzymatic characteristics were analyzed. The optimal pH and temperature, and the kinetic parameters of Mt-Acs were determined. To investigate whether Mt-Acs is regulated by lysine acetylation as reported for Salmonella enterica Acs, its mutant K617R was also generated. Determination of the enzymatic activity suggests that Lys-617 is critical for its function. We further demonstrated that Mt-Acs underwent auto-acetylation with acetate but not with AcCoA as the acetyl donor, which resulted in the decrease of its activity. CoA, the substrate for AcCoA formation, inhibited the auto-acetylation. Furthermore, the silent information regulator (Sir2) of M. tuberculosis (Mt-Sir2) could catalyze Mt-Acs deacetylation, which resulted in activation of Acs. These results may provide more insights into the physiological roles of Mt-Acs in M. tuberculosis central metabolism.
منابع مشابه
Isolation and Characterization of Acyl Coenzyme A Carboxylases from Mycobacterium tuberculosis and Mycobacterium bovis, Which Produce Multiple Methyl- Branched Mycocerosic Acidst
Mycobacterium tuberculosis H37Ra and M. bovis BCG produce multiple methyl-branched fatty acids called mycocerosic acids, presumably from methylmalonyl coenzyme A (CoA). An acyl-CoA carboxylase was isolated from these organisms at a 30 to 50%fo yield by a purification procedure involving ammonium sulfate fractionation, gel ifitration, and affinity chromatography with a monomeric avidin-Sepharose...
متن کاملPURIFICATION AND CHARACTERIZATION OF PROTEIN ANTIGENS ISOLATED FROM MYCOBACTERIUM TUBERCULOSIS (H37Rv STRA IN) AND THEIR EFFECTS ON CELL-MEDIATED IMMUNE RESPONSES IN GUINEA PIGS
Mycobacterium tuberculosis (H37Rv strain) was used in this study. The bacterial cells were disintegrated by sonication. The separation and characterization of the soluble molecules were attempted by various techniques including gel filtration, ion exchange chromatographies and polyacrylamide gel electrophoresis, using SDS and 2ME. Eight protein molecules with molecular weights ranging from...
متن کاملSuccinylome analysis reveals the involvement of lysine succinylation in metabolism in pathogenic Mycobacterium tuberculosis.
Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, remains one of the most prevalent human pathogens and a major cause of mortality worldwide. Metabolic network is a central mediator and defining feature of the pathogenicity of Mtb. Increasing evidence suggests that lysine succinylation dynamically regulates enzymes in carbon metabolism in both bacteria and human cells...
متن کاملSpinach leaf acetyl-coenzyme a synthetase: purification and characterization.
Acetyl-coenzyme A (CoA) synthetase was purified 364-fold from leaves of spinach (Spinacia oleracea L.) using ammonium sulfate fractionation followed by ion exchange, dye-ligand, and gel permeation chromatography. The final specific activity was 2.77 units per milligram protein. The average M(r) value of the native enzyme was about 73,000. The Michaelis constants determined for Mg-ATP, acetate, ...
متن کاملAcetate Dissimilation and Assimilation in Mycobacterium tuberculosis Depend on Carbon Availability.
UNLABELLED Mycobacterium tuberculosis persists inside granulomas in the human lung. Analysis of the metabolic composition of granulomas from guinea pigs revealed that one of the organic acids accumulating in the course of infection is acetate (B. S. Somashekar, A. G. Amin, C. D. Rithner, J. Troudt, R. Basaraba, A. Izzo, D. C. Crick, and D. Chatterjee, J Proteome Res 10:4186-4195, 2011, doi:http...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta biochimica et biophysica Sinica
دوره 43 11 شماره
صفحات -
تاریخ انتشار 2011